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1. Introduction 
 

There are two major computation platforms that have survived the test of time when it 
comes to a combination of efficiency and programmability: the microprocessor, and the 
Field Programable Gate Array (FPGA). Microprocessors are designed to implement a 
von Neumann abstraction of computation, where the computation is specified using a 
sequence of instructions that specify how the state of the system is to be modified. High-
level languages are translated into these instruction sequences using a compiler, hiding 
the complexity of the detailed instructions from a user of such a system. FPGAs are 
designed to implement hardware described using combinational logic and state holding 
elements. The hardware itself is described using a high-level hardware description 
language, and logic synthesis tools are used to translate the description into the 
appropriate configuration information for the FPGA. Both these approaches translate a 
static, functional description of a computation into a static, physical implementation that 
implements the computation. 

Cognitive systems, on the other hand, exhibit properties that are more of a dynamic 
nature. They learn from their mistakes, and repetition makes them more proficient at 
performing a particular task. A microprocessor-based approach with storage that captures 
learnt information was a natural way to perform such computations, and this approach 
has been widely adopted by the artificial intelligence community. However, traditional 
cognitive algorithm implementations on conventional microprocessor-based platforms 
require large amounts of memory, and have high input/output and communication 
requirements. Mainstream industry has moved to multi-core platforms, but even these 
platforms do not support efficient cognitive computing [1]. 

The human brain provides an existence proof of a highly efficient platform for cognitive 
information processing.  This platform is very different from current computing 
architectures. Salient features of the platform that are a departure from conventional 
thinking include the lack of separation between computation and storage, and the 
importance of connectivity between components that can dynamically evolve over time 
based on the computation being performed. These properties more closely resemble 
FPGAs, rather than conventional microprocessors. 

Structural information about the way in which the computation is organized is not 
captured in a microprocessor-based approach. Another limitation comes from the 
observation that storage and computation are physically separate in a microprocessor, 
whereas all evidence points to integrated storage and computation in neural systems.  

This report contains a summary of the work that was conducted in creating a platform 
that was more suitable for cognitive computing tasks. The platform consists of a hybrid 
between a microprocessor and FPGA, with additional features in the FPGA that support 
cognitive computing tasks. As part of this effort, the features introduced in the platform 
have properties suitable for implementing certain hardware security features as well.  
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2. Methods and Procedures 
 

The Cornell Asynchronous Very Large Scale Integration (VLSI) and Architecture group 
previously developed a high-performance FPGA fabric for general-purpose computing. 
Compared to the state-of-the-art commercial FPGAs from industry, the performance of 
the fabric was three to five times higher—a significant improvement. Compared to the 
best previously developed asynchronous FPGAs, the Cornell FPGA was almost twenty 
times faster in terms of application throughput [2,3,4]. This dramatic performance 
increase makes the fabric ideally suited to be integrated into a system containing a high-
performance microprocessor. 

2.1. Asynchronous FPGA Concepts 

In terms of the major building blocks, the 
asynchronous FPGA (AFPGA) architecture looks 
like a traditional synchronous island-style FPGA 
such as a Xilinx Virtex [5]. The FPGA contains a 
configurable logic block (LB), a configurable 
interconnect (SB), and connection boxes (CB) that 
are used to connect the interconnect to the logic 
blocks. Figure 1 shows a high-level view of a 
generic FPGA architecture. 

The major differentiating feature of the AFPGA 
versus a conventional FPGA architecture is the 
underlying computation model used to implement 
the configurable fabric. Instead of thinking of 
computation in terms of gates and registers, the 
AFPGA implements a computation specified by a dataflow graph [6]. In the dataflow 
graph model, computation is described by operations on data values or “tokens” flowing 
through the graph. Tokens correspond to valid data items being processed by elements of 
the dataflow graph. Nodes in the dataflow graph include function blocks that can perform 
computation, as well as routing elements for sending tokens to the appropriate 
destinations. Token arrival at a dataflow node can be thought of as an “event” that 
triggers activity in the AFPGA.  

Dataflow computations can be implemented in a variety of ways. The AFPGA uses a set 
of basic building blocks for dataflow computations based on over ten years of experience 
designing both high-performance asynchronous microprocessors as well as low power 
asynchronous microprocessors. In designing these complex systems, it was found that 
there were only a few circuit topologies that led to efficient implementations. These are 
summarized below, and described briefly. The key building blocks are shown in Figure 2, 
and their functionality is summarized as follows: 

 

Figure 1. Island-style FPGA Architecture. 
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 Function. The function block has N inputs and one output. This is the basic logic 
computation element. It receives a data token from each of its inputs, computes a 
function of the received input data, and produces the value as an output token. 

 Source. A source produces a stream of constant tokens on its output. 

 Sink. A sink consumes any tokens it may receive on its input. 

 Copy. A copy is used to implement the equivalent of signal fanout. It replicates 
every input token it receives on all of its outputs. 

 Initial. An initial block begins by producing a token on its output, and then after 
that simply copies any input token it receives to its output. 

 Merge. The merge block is a conditional block. It receives a data token from its 
control input (shown as a horizontal arrow above). The value of this data token is 
used to select an input port. The input data on the selected input port (vertical 
arrows) will be sent to the output. No other input tokens are consumed. 

 Split. The split block is the dual of a merge. It receives a data token from its control 
input (shown as a horizontal arrow above). The value of this data token is used to 
select an output port. The input data value (vertical arrow) will be sent to the 
selected output port. 

Arbitrary computations can be constructed from these basic building blocks [6,7]. The 
logic block for the FPGA contains all the necessary components to implement any 
dataflow computation. In particular, it contains programmable implementations of all the 
dataflow elements shown above. 

As an example, the function element is implemented using a programmable four-input 
lookup table (LUT). Such a dataflow LUT waits for valid data tokens to arrive on all of 
its inputs, and then produces a new data token on its output based on the truth-table 
configuration of the LUT. Other support logic such as fast carry-chains and multiplier 

 
Figure 2. Building Blocks for Dataflow Computation. 
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support operate in a similar fashion. 

The key performance amplifier in the AFPGA is its flexible routing network. A 
conventional FPGA has over 70% of its delay in the routing network [8]. Since the 
AFPGA operates using a dataflow model, pipeline stages corresponding to queues can be 
introduced into the routing network without impacting the correctness of the computation 
being performed by the AFPGA! This means that designs can benefit from pipelining 
without the additional cost required from electronic design automation (EDA) tools to 
support interconnect pipelining. In the first AFPGA implementation, pipelined stages 
were introduced in the switch boxes in the AFPGA interconnect [2,3]. 

The asynchronous nature of the fabric and the deeply pipelined implementation implies 
that only local paths limit AFPGA performance. For instance, even though the 
interconnect is configurable, it is impossible to create a path that contains a large number 
of switches as in a conventional FPGA because all such paths are partitioned by the 
presence of pipelining in the switch boxes. This is a dramatic difference from a 
conventional FPGA, where long paths through the routing network that have multiple 
switches and buffers are usually on the critical path [8].  The net effect is that the critical 
path limiting the peak frequency of the AFPGA corresponds to the lookup table access 
rather than the routing network. 

The nature of the pipelined interconnect makes the entire AFPGA highly modular. In 
particular, because communication between components on the AFPGA uses the 
dataflow model, the delay of the communication link is not part of the interface 
specification. This enables a highly modular approach to the design of the AFPGA, 
where sub-blocks can be pre-placed without significantly impacting performance. Indeed, 
if data flow between one sub-block and another is unidirectional (as in a computation 
pipeline), there is no loss in throughput by using a modular approach to synthesis and 
place-and-route. 

The impact of aggressive pipelining on the overall performance of the AFPGA is 
significant. In a 0.18µm feature size, the measured peak performance of the AFPGA 
architecture was 674 MHz. For reference, the baseline Xilinx architecture in a similar 
feature size performs at 240MHz [4]. More important, first pass synthesis results for a 
variety of benchmarks demonstrate robust performance. For example, a synthesized 
Finite Impulse Response (FIR) filter core would exhibit a performance of 75% of the 
peak performance of the AFPGA. 

The only real source of performance loss in the AFPGA arises due to data-dependent 
loops in the computation graph. To illustrate this, consider a loop in a synchronous circuit 
that has a logic depth of d seconds, and contains k registers. The design cannot operate at 
a throughput that exceeds k/d, simply because there aren’t a sufficient amount of registers 
on the loop to exceed that performance. This is a fundamental or “algorithmic” limit of 
the design. The AFPGA is constrained by this limit, and we have found that in practice 
the AFPGA can achieve a performance that is close to 80% of the algorithmic limit or 
higher. 
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2.2. Asynchronous FPGA Software 

In addition to hardware, an FPGA platform requires significant software development. In 
particular, design automation tools that take computations described in some language, 
map them to the FPGA architecture, and then generate the configuration bits required for 
the FPGA must be provided for an FPGA to be usable. This task is broken down into 
three major steps. 

Logic Synthesis. The first step in the software flow is logic synthesis. In this step, 
arbitrary computations are specified in a language that resembles a concurrent version of 
the C programming language. This description is converted into a dataflow 
implementation using a new compiler representation called “static token form.” Wide 
datapath operations are broken down into bit-level operations, and various standard logic 
optimizations are performed on the dataflow graph. 

Logic Packing. In this step, the dataflow elements are clustered to match the logic 
structure in the programmable logic blocks in the asynchronous fabric. This improves the 
logic utilization of the overall design. 

Place and Route. For placement and routing, an open-source place-and-route tool known 
as “vpr” (for versatile place and route) developed by the University of Toronto can be 
used. The output of this process is converted into a configuration file to match the 
interconnect topology of the AFPGA architecture. 

The key new step in logic synthesis is illustrated below, by 
describing a simple computation and how it is implemented using a 
dataflow graph. As a first step, consider straight-line programs that 
do not have any conditional execution. The program below shows a 
simple computation where two different functions are computed. 

a:=RECV(A); b:=RECV(B);    x:=f(a,b);    
SEND(x,X);    x:=g(a,b);   SEND(x,Y); 

The inputs are received on ports A and B, and two values f(a,b) 
and g(a,b) are transmitted on output ports X and Y respectively. 
The static token form representation was used as a systematic way 
to translate the computation described in a high-level language into a dataflow graph. 
This representation matches the requirements for hardware implementation of dataflow 
graphs, and the use of this representation provides a simple mechanism for mapping 
designs to dataflow elements. This approach has been automated, and the net effect is the 
creation of the dataflow graph shown in Figure 3 [9]. 

 
Figure 3. Dataflow 

translation of a 

straight-line program. 
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While in this particular case, the 
dataflow graph may be “obvious”, 
it should be stressed that the static 
token form approach is a 
systematic and automated method 
to generate this graph from the 
computation.  

The translation is more 
complicated when we have 
conditional execution. Figure 4 
below shows an example of a 
program with an if-statement and 
its corresponding dataflow graph. 
In this case, the value of a is used 
either to compute f(a) or g(a) 
depending on the value of another 

variable b. To implement this functionality, special split and merge dataflow elements are 
introduced. These elements are used to route the data to the appropriate function, and 
then to collect the result and transmit it on the primary output of the block. The dataflow 
building blocks in Figure 2 are sufficiently expressive so that any program can be 
implemented using those blocks. 

The Defense and Advanced Research Projects Agency (DARPA) supported the work 
described above as part of the Architectures for Cognitive Information Processing (ACIP) 
program [10]. The research results provided an improvement in programmable logic 
performance that was sufficient to launch a commercial enterprise, namely Achronix 
Semiconductor Corporation. 

The work described above provides the technology basis for a high-performance FPGA 
fabric. The goal of the funded effort was to transition this technology into an Air Force 
Research Lab (AFRL) design to be fabricated through the Trusted Foundry program. 
Although the basic principles of operation of the AFPGA were known, there were a 
number of changes required to meet AFRL requirements and for cognitive computing in 
general. 

2.3. Dynamic Reconfiguration with Meta Bits 

The AFPGA was designed as a static architecture, just like most commercial FPGA 
designs. However, dynamic re-configurability was a requirement for two major reasons: 
(i) FPGAs have significant area overhead due to their flexibility [11]. Even the largest 
commercially available FPGAs are too small to accommodate sophisticated software 
applications. It is important to be able to time-multiplex the FPGA area for different 
functions based on evolving application requirements. (ii) Dynamic re-wiring seems to be 
an important property of cognitive architectures. It was important for the AFPGA to be 
able to support this functionality. There are a number of technical difficulties that arise 

 
Figure 4. Translation of conditional execution into a dataflow 

graph. 
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when creating an AFPGA architecture whose configuration can be dynamically changed. 
These arise due to two kinds of dynamic configuration changes: (i) Using available real-
estate for new computations; (ii) Modifying existing real-estate based on new 
information. 

Configuration information in an AFPGA can be treated as a large on-chip memory block. 
Executing write operations to the configuration memory of the AFPGA can modify bits 
of configuration. Adding additional mapped designs to the AFPGA while part of the 

AFPGA is being used for a different function is a challenging task, because it requires 
fine-grained addressability of all the configuration bits. Unfortunately, introducing bit-
level addressing capability for configuration memory is impractical because it has a large 
impact on the area of the AFPGA design.  

The method used to eliminate the area overhead was to introduce a set of meta-

configuration bits throughout the AFPGA fabric. These meta-configuration bits can be 
used to write-protect parts of the AFPGA configuration memory. The meta-configuration 
bits are designed so that they control access to configuration information for logically 
coherent sections of the AFPGA fabric. For example, one bit controls access to all the 
configuration information required for LUTs in a logic block since it is expected that 
these LUTs would be grouped together for purposes of reconfiguration. Meta-
configuration bits can also be used to partially modify an existing configuration. Once 
again, the meta-bits are used to select the section of the design to be updated. The bits 
serve as a selection mask at a granularity that is appropriate for AFPGA reconfiguration. 

The introduction of meta configuration bits enables both dynamic configuration 
modalities, and the overall area impact of this additional information was found to be 
approximately 1%. 

2.4. Synchronous Interface Design 

An AFPGA expects asynchronous protocols on its inputs and outputs. However, most 
complex designs implemented with commercial design automation tools are clocked. One 
of the requirements for the AFRL project was to create a clocked interface to the AFPGA 
architecture. 

The method used for interface purposes was to modify the traditional input-output (I/O) 
interface ring of the AFPGA with synchronous register-based ports. These I/O ports can 
be configured as special registers that can be externally read (output registers) or written 
(input registers) by the processor. When an input register is written by the external entity, 
the value stored in the register is injected into the AFPGA fabric as a dataflow token; 
when an output register is read by the external entity, the current value of the output 
register is transferred to the external entity and the value of the output register can be 
updated by the AFPGA on the following cycle.  

The input register behaves as a one-place queue, and because the AFPGA fabric is fast 
and heavily pipelined, the expectation is that there will be no stalls during typical 
AFPGA operations. The output register also behaves like a queue, but it has an extra bit 
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(visible as a separate special register) to indicate if there is valid data present or not. The 
external entity can either check this bit and wait for it to be valid before reading the 
output register, or know (by timing analysis of the logic mapped to the AFPGA) when it 
is safe to read the output relative to the time at which the input was provided. On a read 
of the output register (assuming the valid bit was set), the valid bit is automatically 
cleared, and only then can the output register be updated with the next value from the 
AFPGA. Since the pipelined AFPGA fabric implicitly queues data throughout the fabric, 
it is expected that no additional queue space will be necessary for the input/output 
registers. The input/output registers and valid bits are visible externally, and can be read 
or written in the usual way. These registers also contain a conventional synchronizer 
circuit to hide the asynchronous/synchronous boundary [12, 13].  

These interfaces were designed in collaboration with several researchers at AFRL, so as 
to ensure that the AFPGA could communicate with the AFRL design in a manner that 
met the requirements for the larger AFRL project. 

2.5. Tool Chain for Design Mapping 

Previous work in developing a software tool chain for mapping designs to the AFPGA 
was based on translating a high-level asynchronous design entry language into a 
configuration bit-stream [8]. This tool flow, while efficient, uses a design entry language 
that is not used outside the asynchronous design community. To make the AFPGA 
accessible to hardware designers that have experience with commercially available 
design tools, the project also created a new tool flow based on commercial design entry 
languages such as Verilog and VHDL (Very High Speed Integrated Circuit Hardware 
Description Language). 

Commercial tools for logic synthesis create a clocked gate-level netlist from a Verilog or 
VHDL description. Companies such as Synopsys, Mentor Graphics, and Cadence have 
developed these tools over decades. The method adopted by this project was to leverage 
this investment and convert the output of commercial synthesis tools into a form suitable 
for mapping to the AFPGA architecture. 

The design flow for the new tool chain operates as follows: 

 Synthesize the Verilog or VHDL description using a commercial synthesis tool. 

 Use the open source abc package to map the output of the synthesis tool into 
look-up tables of a fixed size (4-input lookup tables for the AFPGA). 

 Clean up the output of abc using a simple line-based script. 

 Use the open source vpr package to place and route the AFPGA. 

 Translate the output of vpr into the correct value of all the configuration bits for 
the AFPGA. 
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This approach leverages commercial synthesis tools and existing designs described using 
popular commercial hardware description languages [14]. 

2.6. Partially Automated Physical Implementation 

The implementation of the AFPGA required significant effort from a physical design 
standpoint. Cornell has developed a number of tools for the logical implementation of 
high-performance asynchronous logic circuits. These tools were leveraged in the creation 
of the new AFPGA architecture. 

The tools use a hierarchical, type-safe design entry language called “ACT” (for 
Asynchronous Circuit Tools). The design entry language uses an abstract representation 
of transistor pull-up and pull-down networks to specify every gate in the circuit that 
implements the AFPGA. Transistor sizes can also be specified in the language, and the 
entire language is automatically converted into a Simulation Program with Integrated 
Circuit Emphasis (SPICE) format for both transistor-level simulation and physical layout.  

To simplify the physical layout procedure, part of the work conducted on this project was 
to develop a tool called “pandR”  (for “place and route”) whose input is in SPICE 
format. This tool is user-guided, and contains support for automating some of the tedious 
manual layout tasks. The tool is also aware of the physical design rules for the 
technology, and respects these design rules to the extent possible. This tool was used to 
accelerate the physical implementation process. In addition, standard layout editors were 
used to complete the physical layout.  

 

3. Results and Discussion 
 

The physical design of the AFPGA layout was completed in IBM’s 65nm LP process 
(10LP) available through the Trusted Foundry Access Program. The AFPGA was 
designed as an intellectual property (IP) block with the appropriate design files so that it 
could be integrated with AFRL’s system design in the same way as third-party IP blocks 
such as phased locked loops, high-speed serial interfaces, memories, etc. are integrated in 
commercial design flows. AFRL submitted the chip for fabrication through the Trusted 
Foundry Access Program. 

3.1. New AFPGA Core Architecture 

Based on prior AFPGA design experience, a number of changes were made to the 
architecture of the AFPGA logic block. These changes were accompanied by 
corresponding changes to the software tool flow to support the new logic block 
architecture. 
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The original AFPGA resembled the logic block architecture of a Xilinx Virtex series 
FPGA [5]. The core computation block was a four-input lookup table, which has 
previously been shown to be a good compromise between performance and area-
efficiency. The logic block also contained hardware support for fast ripple carry adders 
via both additional logic and a dedicated routing path for fast carry chains that bypassed 
the general-purpose routing network. In addition, multiplier support was provided 
through a programmable AND gate. Figure 5 shows the detailed block diagram of the 
original AFPGA architecture [3].  

There were a number of limitations of this 
architecture that were remedied in the new 
AFPGA design. First, the logic block architecture 
in Figure 5 contains a single four-input lookup 
table. While this was suitable for a first-
generation AFPGA, modern reconfigurable 
fabrics have clustered logic blocks containing 
multiple lookup tables per logic block. This 
choice results in significantly reduced routing 
requirements, as larger sections of logic can be 
mapped to a single logic block without resorting 
to the global routing network. The result of this 
analysis was that our new AFPGA architecture 
contains four four-input lookup tables per logic 
block. A second major change was made in the 
design of the function unit. In the original 
AFPGA (as in conventional synchronous FPGAs 
from Xilinx/Altera) the lookup table that is part 
of the function unit is re-used to implement a 

 
Figure 5. Original AFPGA Logic Block. 

 

 
Figure 6. Logical configuration of the core of 

the new AFPGA logic block. 
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ripple-carry adder by the introduction of some support logic (exclusive OR gates). 
Instead of this, our new AFPGA design uses dedicated hardware adder structures that 
share inputs with the lookup table. The logic block can either be configured to use the 
lookup table, or configured as an adder. The benefit of this approach was that carry 
chains in our architecture are twice as fast, because the adder block can be designed to 
perform two bit additions in a single stage rather than just a one-bit addition. Figure 6 
provides a logical view of the new AFPGA logic block core. Each block can be thought 
of as two halves, each containing two four-input lookup tables, a two-bit adder, and a 
conditional unit containing the split and merge dataflow elements. 

The internal connectivity supported by the logic block is significantly enhanced 
compared to the original AFPGA architecture. Inputs arriving from the switch box are 
connected to the input connection box. This connection box provides simple point-to-
point connectivity that allows inputs to be connected to a small number of dedicated input 
channels for the overall logic. This is followed by an input cross-bar with copying 
support, which converts the small number of inputs from the switch box into a set of 
inputs for each half of the AFPGA logic core (Figure 6). Copying support in this cross-
bar allows a single input from the routing fabric to be copied to multiple input pins of the 
logic core. After passing through the logic core, the output of the logic block can also be 
copied to multiple destinations by the output copying block, and this is followed by the 
output connection box that provides connectivity back to the global routing network. 
Figure 7 is a block diagram that describes the overall logic block with the local routing 
network support. Another interesting feature of the new AFPGA architecture is the 
generality of feedback connections that are available. Outputs from the logic core can be 
fed back into the input cross-bar, enabling general connectivity within the logic core 
itself. Finally, the logic block contains a number of buffers that are used to decouple 
different parts of the design and increase throughput through pipelining. 

Each AFPGA tile also contains meta-configuration bits that can be used to protect 
various parts of the configuration space of the tile. In the completed version of the 
AFPGA, the configuration architecture assumes that each logic block can only be 
configured for one function; on a change, either no elements within a logic block are 
impacted or all the elements in the logic block are impacted. This simplification reduces 
 

 
Figure 7. Internal connectivity provided by the AFPGA logic block. 
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the meta-configuration bit overhead, keeping it at ≈1% when both the configuration bits 
for routing and logic are taken into account. 

3.2. Dynamic Reconfiguration Ability 

The new AFPGA routing network contains significant support for dynamic 
reconfiguration. Apart from the per-logic block configuration support described above, an 
important consideration in the design of the AFPGA was configuration support for 
routing. Meta-configuration bits were designed to allow a small group of tracks to be re-
configured without impacting existing configurations of adjacent tracks. 

Figure 8 provides an illustration of the reconfiguration support provided in the new 
AFPGA. The figure on the left corresponds to a configuration where the blocks 
highlighted in green correspond to some computation mapped to the AFPGA, and the 
blue path is configured to connect a source to a destination. The new configuration 
preserves the configuration in green, but changes the source-destination path to the one 
shown on the right. The meta-configuration bits are organized so as to support this level 
of dynamic reconfiguration. Observe that the new path occupied by the blue routing track 
utilizes resources that are physically adjacent to the green configuration. This is made 
possible by the meta-configuration bits, as only the configuration corresponding to the 
blue path is modified. 

The value of the meta configuration bits are a global mask which identifies the parts of 
the AFPGA fabric impacted by reconfiguration. The key difference between meta 
configuration bits and other possible mechanisms (e.g. using bit-addressable 
configuration memory) is that the meta bits group configuration information into logical 
units that are meaningful from the standpoint of dynamic reconfiguration. Meta-
configuration bits are also grouped into words of a size that corresponds to the normal 
granularity of the configuration memory organization. By writing the appropriate meta-

 
Figure 8. An example of supported routing re-configuration in the AFPGA. 
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configuration bits, the appropriate subsets of ordinary configuration bits are selected for 
modification. The update pictorially depicted in Figure 8 would proceed as follows: 

 Step 1. All meta-configuration bits would be cleared, thereby preventing any 
configuration modifications. 

 Step 2. The meta-configuration bits corresponding to the original and new blue 
route are set, thereby enabling modifications to the configuration bits controlling 
all the gates impacted by the route change. 

 Step 3. The configuration bits are updated. While full configuration word writes 
are attempted, the masking due to meta-configuration bit values ensures that only 
the appropriate subset of configuration information is modified. 

 Step 4. The route is initialized by following the reset protocol for the 
asynchronous logic. Once again, meta configuration bits are used to ensure that 
only the new route is initialized. The green configuration is not impacted by the 
reset protocol. 

3.3. AFPGA Configuration Memory and Security 

The previous AFPGA design used a shift register chain to implement the configuration 
memory. Unfortunately, a shift register chain is very inefficient from the standpoint of 
area. The new AFPGA architecture uses a modified static memory cell as the core 
configuration storage element to minimize the amount of area required for configuration 
bits. This is similar to the approach taken in commercial FPGA implementations [8]. 

There are a number of unique challenges when designing a configuration memory cell. It 
may seem that a standard static random access memory (SRAM) can serve the function 
of configuration memory. However, there are a number of requirements for a 
configuration memory storage element that differ from those of a standard SRAM bit 
cell. 

A traditional SRAM bit cell has to operate correctly only in an array environment. 
Reading and writing the bit is performed through shared lines, and hence the capacitive 
loading on various access ports for a standard SRAM is well-defined and deterministic. 
Apart from edge effects (that sometimes require dummy SRAM cells to surround the core 
memory array), bit-cells have an identical—or at least very predictable—environment.  

FPGA configuration memory is used to control gate voltages on pass transistors. This 
control voltage is required at all times—which means that all the bits of configuration 
memory need to be accessed continuously, and in parallel. To simplify the design of the 
AFPGA configuration memory, isolation buffers were introduced between the stored 
configuration bit and the pass transistor gates so that a dense configuration memory bit 
cell would have a deterministic electrical environment. Wiring considerations imply that 
area-optimized FPGA layout places configuration memory bits near the locations where 
they are used. Therefore it is impractical to create large, dense configuration memory 
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arrays—since each bit needs at the very least a wire that connects it to the appropriate 
pass transistor gate. The AFPGA configuration memory was organized in very small 
arrays that were placed near the locations where their values were needed. This 
observation also means that the configuration memory bits cannot use high-density 
foundry SRAM cells, because foundry cells require that the bits be organized in a dense 
array configuration. 

The AFPGA uses approximately 1Kbit of configuration memory per four input lookup 
table. Of this total storage requirement, only sixteen bits are required for the lookup table 
configuration; the rest correspond to the average cost of configuration information for 
routing. Even a modest AFPGA size (e.g. 1024 LUTs) requires a configuration memory 
of the order of 1 Mbit! However, the bits of this memory are not organized in a densely 
packed configuration as discussed earlier, but look more like a sparse array that logically 
behaves as a normal SRAM. The result is that the AFPGA configuration memory 
requires much longer bit lines and word lines compared to a traditional SRAM that has 
the same total storage. 

To handle the cross-talk and coupling issues created by the long word and bit lines, the 
AFPGA configuration memory is partitioned into smaller banks, with local drivers placed 
periodically throughout the AFPGA array. Critical parameters that govern the read and 
write margins in the AFPGA configuration memory are therefore isolated to a small 
physical region sized to maximize robustness for a reasonable area budget. 

Meta configuration bits are also organized in the same manner as ordinary configuration 
bits. A fixed section of the address space of the configuration memory was allocated for 
meta-configuration information. Operations on meta-configuration bits were identified by 
comparing a subset of the address bits to a fixed value corresponding to the meta-
configuration address space. 

Reads and writes to ordinary configuration bits were gated by the appropriate meta-
configuration bits. Each AFPGA tile contains meta-configuration bits that control 
ordinary configuration bits within the tile. The overall area overhead of this scheme was 
found to be ≈1%. Reads and writes to configuration bits that are not enabled (because 
their meta-configuration bits are clear) are ignored; this effectively write-protects any 
configuration bit that is protected through the meta-configuration information. 

Since meta-configuration bit addresses are easily identified externally, memory address 
protection mechanisms can be used to protect not just meta-configuration bits but 
ordinary configuration bits. To write-protect any AFPGA configuration, the following 
steps can be followed: 

1. Set the meta-configuration bits so that reads and writes to the appropriate 
ordinary configuration bits are disabled. 

2. Place the system in a mode that disables any modifications to the meta-
configuration bits. 

At this point, any writes to AFPGA configuration memory will not modify the protected 
configuration information. Write protection of the meta-configuration bits is supported by 
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a single input signal to the AFPGA array. Reading the configuration memory can also be 
disabled by another input pin to the AFPGA. By disabling reads and writes through a 
secure path, the current configuration of the AFPGA can be protected from an external 
attacker. 

3.4. AFPGA Interface Circuits 

Integrating an asynchronous FPGA with standard synchronous logic requires an interface 
circuit to manage the potential metastability that can arise when an asynchronous signal 
change violates setup/hold time requirements of the clocked state-holding element. 

The circuit used for the AFPGA 
designed for this project was a variant 
of a conventional two-flop synchronizer 
[12]. The basic principle behind a two-
flop synchronizer is shown in Figure 9. 
A signal from the sender passes through 
two flip-flops that are clocked by the 
receiver. The first flip-flop could have 
its setup or hold time violated, and so its 
output could be metastable. However, 
this metastable state has an entire clock 
cycle to resolve itself before being 

examined by the receiver [13]. This approach provided sufficient margin for the AFRL 
design given the operating frequencies and underlying process technology. 

Another requirement of a synchronization interface that must be ensured is that multiple 
values cannot be transmitted while the synchronizer is in a metastable state. This 
particular problem was handled by providing full flow control between the sender and 
receiver in the circuits designed for the AFPGA [12]. 

 

3.5. Circuit Changes 

The AFPGA circuits were updated and ported to the 65nm process technology used for 
this project. These changes involved evaluating analog properties of the asynchronous 
circuits to ensure that the circuits continued to conform to the digital abstraction. This 
evaluation impacted the overall transistor sizes of the circuits, and in some cases required 
re-design to ensure that large loads were driven with the appropriate circuit family. 

There were two major changes that were made to the circuits in the AFPGA. First, the 
lookup table logic was modified so that its inputs used one of four encoding rather than 
dual rail encoding. This reduced the number of transistors in series required to implement 
the logic stack for the lookup table, and improved the power and performance of the 

 
Figure 9. Basic two-flop synchronizer. 
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circuit. The second major change was more global, and involved the introduction of 
power gating transistors in the AFPGA architecture. 

Power gating was introduced as a means to control the leakage current when sections of 
the AFPGA are unused. Since configuration information determines which parts of the 
AFPGA circuit are in fact active, additional configuration bits were used to control 
power-gating transistors connected to the power supplies for different sections of the 
AFPGA. Fine grained power gating enables small clusters of logic to be gated off, 
thereby providing leakage management when the AFPGA is underutilized. Note that 
power gating transistors provide another mechanism for disabling AFPGA functionality. 
Hence, the configuration bits used to control power gating must also be protected when a 
configuration must be locked down. 

3.6. Physical Implementation 

The physical design of the AFPGA was undertaken using a combination of commercially 
available layout editors as well as a custom-designed tool to automate some of the 
physical design process. The newly developed “layout assistant”, called “pandR” (for 
place and route), was created to simplify some of the aspects of creating the physical 
layout for the AFPGA. 

The input to pandR is a SPICE netlist that contains transistors and their widths and 
lengths. The input is hierarchical, and the input hierarchy is used to create the layout 
hierarchy. The other input to the tool is a technology description file that contains all the 
necessary information required by the tool to create design rule clean layout.  

On startup, the tool creates a hierarchical graph representation of the layout that has to be 
generated. Transistors are grouped into stacks that correspond to contiguous regions of 
diffusion in the physical layout. Each stack is assigned a default position, and they are 
grouped based on the gate they correspond to and the type of transistor they contain (p-
type or n-type). 

The placement algorithm used is a variant of quadratic placement with the goal of 
minimizing the potential energy of the stacks [15]. Unlike traditional physical automation 
tools that create a placement for all the layout elements and then follow that by routing all 
the wires, pandR routes partial nets while placement is being performed. 

The main loop that the tool executes can be described as follows: 

1. Build a matrix for the quadratic solver, including all previously placed stacks, 
unplaced stacks, and I/O pins. 

2. Solve the quadratic equation and assign all unplaced stacks a position. 

3. Pick a stack to place, and legalize its position so that all design rules are satisfied. 

4. Run the router to draw wires that may have been erased due to previous steps. 
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This continues until either all stacks have been placed, or until the tool cannot complete a 
step without violating design rules.  

Figure 10 shows a screen shot of the layout assistant for a simple circuit used to 
implement a queue. One of the more unique features of this tool is that the I/O pins 
(shown as black circles) of a circuit can be placed in the interior of the layout region 
rather than just on the boundary, and a signal can have multiple I/O pins allowing for 
external connections at different location when performing hierarchical layout. 

Dense layout cannot typically be fully automated using a simple set of algorithms. Often 
user input is required to identify opportunities for optimization that, to date, have eluded 
automated approaches. To support this, pandR has a number of commands that can be 
used to modify any layout and use automated support only when it is appropriate. In this 
sense pandR can be thought of as a much more sophisticated layout editor where the 
primitive operations are the same as a tool such as Virtuoso from Cadence. The 
difference is that the tool also includes support for automated stack generation, 
placement, and routing and a user can pick and choose what automation support they 
desire.  

 
Figure 10. Screenshot of the pandR layout assistant. 
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An important feature of pandR is that all commands and actions of a user of the tool are 
captured in a script. This script can be “re-played” to re-create the physical layout. This 
replay procedure is deterministic, and captures a mixture of command-line operations as 
well as interactive commands (for example, drag and drop of part of the layout). Every 
operation that modifies the layout is captured in a file so that the layout creation process 
is reproducible. 

For more complex circuits that are hierarchical, the tool is able to layout each sub-circuit 
individually and then combine those layouts into a higher level module. The sub-circuits 
are “grey boxed” and placed as individual components, whereas wire routing is aware of 
the internal geometry of the sub-circuit. 

Figure 11 shows a screenshot of the physical layout of the AFPGA. The tile consists of 
two sections that are approximately equal in size. The left hand side of the tile 
corresponds to the internals of the logic block, including the lookup tables, arithmetic 
functions, and internal tile routing. The right hand side of the tile consists of the pipelined 

 

 
Figure 11. Physical layout of an arrayable tile of the new AFPGA. 
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interconnection network for intra-tile routing. The area of the tile used by logic functions 
is ≈10%, with configuration memory using ≈30% of the area and the rest being used by 
the routing network. 

There were a number of design issues that required detailed analysis of analog effects by 
circuit simulations that modeled parasitic resistances and capacitances. While large 
simulations that contain accurate models are beyond the scope of existing commercial 
tools, simplified but conservative models were used to ensure robust functionality of the 
final AFPGA. Many changes to the underlying circuits were made based on these 
simulations, including partitioned wires for the configuration memory and appropriate 
spacing and shielding for the interconnect lines in the AFPGA. 

Extensive SPICE simulations predict that the peak performance of this AFPGA is in the 
range of 800 MHz.  This frequency was chosen based on the performance of the rest of 
the system (below 150 MHz) that will include the AFPGA fabric. The total number of 
AFPGA tiles in the system can be changed easily by simply creating an array of the 
appropriate size. 

The edge of the tile contains interface circuits as well as programming support for the 
configuration memory. This interface exports a synchronous interface to the rest of the 
system for easy integration with commercial physical design flows. With help from Prof. 
Stine of Oklahoma State University, a flow was created that enabled the entire physical 
AFPGA block to resemble a synchronous IP block that was placed and routed with 
Cadence Encounter. 

In collaboration with AFRL, the final physical implementation was submitted for 
fabrication through the Trusted Foundry Access Program to IBM’s foundry services. 

4. Summary 
Previous research on asynchronous FPGA architectures at Cornell resulted in the 
development of a new high performance reconfigurable fabric. This funded effort 
transitioned the new technology to a sensitive AFRL project that combined general-
purpose computing and reconfigurable logic for cognitive information processing 
applications. In a joint development effort, a large 65nm chip was created with AFRL 
contributing portions of the design and Cornell contributing a high-performance 
asynchronous FPGA. For suitability for cognitive operations, the AFPGA was designed 
to support dynamic reconfiguration and virtualization of its resources. Additional features 
were introduced to enable the AFPGA configuration to be trustworthy even if the system 
design was compromised. A chip to demonstrate the new architecture was submitted for 
fabrication through the Trusted Foundry Access Program.  A follow on project was begun 
to update the design tools for a 32nm fabrication process design flow and add new 
security features for inclusion in a future design.   
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6. Acronyms 
 

Acronym Expanded Form 

ACT Asynchronous Circuit Tools 

AFPGA Asynchronous Field Programmable Gate Array 

AFRL Air Force Rome Laboratories 

CB Connection box 

DARPA Defense Advanced Research Projects Agency 

EDA Electronic Design Automation 

FPGA Field Programmable Gate Array 

I/O Input/Output 

IP Intellectual Property 

LB Logic block 

LUT Lookup Table 

SB Switch box 

SRAM Static Random Access Memory 

VHDL Very High Speed Integrated Circuit Hardware Description 
Language 

VLSI Very Large Scale Integration 
 




